Белоусова Людмила Алексеевна воспитатель МБДОУ «Детский сад №176» г. Барнаул

Проблемно-игровые методы логико-математического развития детей дошкольного возраста

Математическое развитие детей невозможно осуществлять вне включения их в проблемную, исследовательскую деятельность, экспериментирование, моделирование, поэтому встала необходимость использования педагогами проблемноигровых методов в практике организации образовательной деятельности с детьми дошкольного возраста. Сущность метода заключается в том, что ребенок не ограничен в самостоятельном поиске и применении игровых и практических действий; проведении опытов; общении со взрослым и со сверстниками по поводу развития ситуации; разрешения противоречий И устранения ошибок; проявления интеллектуальных эмоций.

Цель использования проблемно-игровых методов – развитие у детей познавательной активности, интеллектуально-творческих способностей посредством применения разнообразных средств

- математические сюжетные игры
- экспериментирование и исследовательская деятельность
- творческие ситуации, задачи, вопросы
- проблемные ситуации, задачи, вопросы
- логические и математические игры

Математические сюжетные игры.

Для сюжетной математической игры, специально сконструированной для детей, характерна игровая направленность, насыщение проблемными ситуациями, творческими задачами, наличие ситуаций поиска с элементами экспериментирования, практического исследования, схематизацией.

- 1 этап сюжетных математических игр включат в себя следующее: в игровой обстановке, соответствующей сюжету предстоящей игры, воспитатель сообщает детям завязку.
- 2 этап: происходит развитие сюжета, в процессе которого дети становятся активными участниками осуществляемого сценария.

Воспитанники:

- осваивают, преобразуют, изменяют информацию о свойствах, отношениях, зависимостях предметов, форм, величин, чисел;
- овладевают системой способов познания: обследуют, сравнивают, группируют, классифицируют, уравнивают;
- обобщают, делают выводы, прогнозируют развитие ситуации, схематизируют, пользуются знаками и символическими замещениями.
- 3 этап. Подводятся итоги, которые могут быть представлены:
- анализом жизненной ситуации, аналогичной той, которая имела место в ходе математической игры;
- акцентированием внимания детей на наиболее ярком событии сюжетной математической игры;

установлением сходства сюжета игры и известного литературного произведения и т.д.

Исследовательская деятельность и экспериментирование в математическом развитии ребенка наиболее ярко просматривается при изучении таких свойств предметов, как масса, объем, преобразование геометрических фигур и т.д...

Творческие задачи, ситуации и вопросы.

Дошкольникам целесообразно предлагать творческие задачи, ставить перед ними творческие вопросы после того, как необходимые для решения представления будут сформированы. Существуют определенные трудности в выборе задач для детей. Если задача простая — ребенку скучно, если сложная — он отказывается ее решать. Существует несколько уровней трудности задач.

- 1. ребенок может решить задачу самостоятельно
- 2. самостоятельно решить задачу ребенок не может, только с помощью наводящих вопросов.
 - 3. ребенок не может решить задачу, но может понять ход решения и ответ
 - 4. ребенок не может ни решить задачу, ни понять ход решения и ответ.

Следует предлагать задачи первых трех уровней сложности, причем задачи третьего уровня сложности в совместной деятельности педагога и детей.

Пример творческой задачи: «Как нарисовать солнце, если наш карандаш умеет рисовать только квадраты?».

Эта задача может быть решена через осознание структуры многоугольников: чем больше углов, тем больше фигура похожа на круг. Это задача третьего уровня. Можно предложить ее решить практическим способом: множество квадратов накладывать друг на друга или же выстраивать из них замкнутую в круг линию.

Результатом включения в образовательный процесс творческих задач, ситуаций, вопросов будет развитие у детей, да и взрослых творческих способностей, уточнение и углубление представлений о разнообразных свойствах, связях, отношениях и зависимостях, развитие инициативности, самостоятельности, чувство юмора, получение удовольствия от умственного труда и общения.

Проблемные ситуации, задачи, вопросы

В группе создана картотека проблемных ситуаций по всем основным разделам математического развития детей: количество и счет, величина, форма, ориентировка во времени и ориентировка в пространстве. Некоторые проблемные ситуации представлены в виде интерактивных игр.

Раздел «Количество и счет»

Проблемная ситуация «Как лягушонок научился считать»

На озере жили лягушонок и цапля. У каждого из них была своя кочка-домик. Цапля жила между четвертой и шестой кочками, считая слева. А лягушонок помнил только то, что его домик находится на пятой кочке.

Вопросы: Как лягушонку найти свой домик? Где живет лягушонок?

- Варианты ответов:
- 1. Лягушонок живет на пятой кочке, если считать слева направо.
- 2. Лягушонок живет на любой кочке, где не живет цапля.
- 3. Лягушонок живет на пятой кочке, если считать справа налево.

Решение проблемы: сначала дети находят домик лягушонка, считая слева направо. Некоторые тут же отвергают это решение, считая, что цапля и лягушонок не могут жить в одном домике, потому что цапля может проглотить лягушонка. Ведь она живет на пятой кочке (между четвертой и шестой).

Второй вариант тоже отклоняется, т.к. по условию задачи лягушонок живет на пятой кочке. Дети приходят к выводу, что правильный – третий вариант ответа. Дети находят

пятую кочку, считая справа, - там домик лягушонка. Они убеждаются в том, что при определении места предмета нужно всегда указывать, с какой стороны считать.

Вывод: Место предмета зависит от порядка и направления счета.

Проблемная ситуация: «Найди домик лягушонка»

Лягушонок живет на шестой кочке. Как найти его домик?

Можно ли найти шестую кочку? Почему?

Можно ли найти шестую кочку? Почему?

Варианты ответов:

- 1. узнать, сколько кочек Кочки разбросаны, неизвестно, где первая, вторая...
- 2. Можно всего, а шестую найти нельзя.

Решение проблемы. Дети считают кочки по порядку. Но потом замечают, что каждый из них показывает на разные кочки. Дети предлагают пронумеровать домики-кочки, но тогда у каждого получается своя нумерация. Дети приходят к выводу, что при таком расположении кочек нельзя найти домик лягушонка.

Вывод. Если множество предметов не расположено в ряд (не упорядоченно линейно), то место предмета определить нельзя.

Раздел «Величина» Сравнение предметов при помощи условной мерки. Проблемная ситуация «Обида Пети»

Дети слушают рассказ Ф.Н. Блехер «Обида Пети».

Y Веры была узкая вазочка, а у Пети — чашка с широким дном. Мама на кухне насыпала по стакану ягод: Вере — в вазочку, а Пете — в чашку.

У Веры получилась полная вазочка, а у Пети только полчашки, Петя посмотрел на полную Верину вазочку и заплакал.

- Почему ты плачешь? спросила мама.
- Ты дала мне ягод меньше: у Веры вон сколько, целая вазочка!

Вопрос. Что можно сказать о количестве ягод у Пети и у Веры?

Варианты ответов.

- 1. У Пети ягод меньше всего полчашки
- 2. У Веры ягод больше полная вазочка.
- 3. У Пети и Веры ягод поровну.

Решение проблемы. Решая эту проблему, дети высказывают самые разные аргументы. Наиболее внимательные дети вспоминают, что мама насыпала каждому по одному стакану ягод, но в разную: узкую и широкую, из-за того, что посуда разной формы, кажется, что ягод не поровну. На самом деле ягод одинаковое количество, потому что их не «убавляли» и не «добавляли».

Возникает новая проблема: Как можно доказать, что у детей одинаковое количество ягол?

Варианты ответов:

- 1. Можно пересчитать ягоды
- 2. Можно измерить ложками (стаканчиком)
- 3. Высыпать Верины ягоды из вазы в такую же чашку, как у Пети.

Дети проверяют предложенные варианты, выбирают наиболее рациональный и приходят к выводу, **что количество вещества не зависит от формы сосуда**.

Дети с удовольствием откликаются на предложение педагога использовать измерения жидких и сыпучих тел. Для этого организуется сюжетно-дидактическая игра «Аптека доктора Айболита», где для отмеривания «лекарств» используются различные мерки (ложки, пипетки, стаканчики)

И наконец, дети с интересом решают наиболее сложные задачи, связанные с измерением. Педагог загадывает загадку: «Чем больше ты из нее берешь, тем больше она становится». Что это? Как может быть? Когда?

Эта загадка вызывает затруднение. У детей в обычной жизни работает стереотип: чем больше берешь, тем меньше остается. Загадка интересна тем, что противоречит стереотипу. Отгадать ее помогает практический эксперимент, Например, можно выкопать ямку для растения.

Раздел «Форма»

Проблемная ситуация «Волшебные превращения фигур»

Воспитатель читает стихотворение Е.Панина «Треугольник и квадрат» Вопрос. Что произойдет с квадратом, если у него срезать все четыре угла? Варианты ответов.

- 1. Получится фигура без углов,
- 2. Получится больше углов.

Решение проблемы. Найти правильный вариант ответа помогают практические действия с бумажным квадратом и ножницами. Последовательно срезая углы, дети наблюдают за возрастанием их количества от 4 до 8 и убеждаются в правильности второго ответа.

Дети выясняют количество вершин, сторон и углов у разных фигур. Они размышляют, что получится, если у разных многоугольников срезать углы. Правильность суждений определяется в ходе практических действий.

Логические, математические развивающие игры

В этот раздел внесены игры с блоками Дьенеша, палочками Кюизенера, кубиками Б.П. Никитина, Танграм, Колумбово яйцо, игры в шашки и шахматы.

Так, на основе игры «Уникуб» детям была предложена проблемная ситуация «Построй водонапорную башню». Педагог сообщал детям, что в городе стояла водонапорная башня, которая подавала воду в дома, но со временем она разрушилась. Сохранилась лишь схема постройки, а вот секрет строительства не сохранился. Как можно восстановить башню?

Ответ кажется очевидным – выложить постройку по схеме, начиная строительство с нижних кубиков. Но приступая к строительству, дети замечают, что постройка рушится, когда они выкладывают ряд, состоящий из двух кубиков. После нескольких попыток, дети начинают искать другой способ постройки. Некоторые из них пытаются выложить постройку на столе, а затем поднять её. И вновь неудача — постройка рушится.

Неудачи и шум за столами привлекают внимание других детей. Кто-то говорит, что башня просто нарисована и построить её нельзя, другие начинают предлагать различные варианты построек. В итоге дети приходят к выводу, что башню надо начинать строить с верхних кубиков, а не с нижних.